This is a rotational kinematic problem because we have constant acceleration.

Rotational kinematic equations:

$\overline{){{\mathbf{\omega}}}_{{\mathbf{f}}}{\mathbf{=}}{{\mathbf{\omega}}}_{{\mathbf{0}}}{\mathbf{}}{\mathbf{+}}{\mathbf{}}{\mathbf{\alpha}}{\mathbf{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathbf{\theta}}{\mathbf{=}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{(}}{{\mathbf{\omega}}}_{{\mathbf{0}}}{\mathbf{+}}{{\mathbf{\omega}}}_{{\mathbf{f}}}{\mathbf{)}}{\mathbf{t}}\phantom{\rule{0ex}{0ex}}{\mathbf{\u2206}}{\mathbf{\theta}}{\mathbf{=}}{{\mathbf{\omega}}}_{{\mathbf{0}}}{\mathbf{t}}{\mathbf{}}{\mathbf{+}}\frac{\mathbf{1}}{\mathbf{2}}{\mathbf{\alpha}}{{\mathbf{t}}}^{{\mathbf{2}}}\phantom{\rule{0ex}{0ex}}{{\mathbf{\omega}}}_{{\mathbf{f}}}^{{\mathbf{2}}}{\mathbf{=}}{{\mathbf{\omega}}}_{{\mathbf{0}}}^{{\mathbf{2}}}{\mathbf{+}}{\mathbf{2}}{\mathbf{\alpha}}{\mathbf{\u2206}}{\mathbf{\theta}}}$

A turntable that is initially at rest is set in motion with a constant angular acceleration α. What is the angular velocity of the turntable after it has made one complete revolution?

(A) √2α

(B) √2πα

(C) √4πα

(D) 2α

(E) 4πα

Frequently Asked Questions

What scientific concept do you need to know in order to solve this problem?

Our tutors have indicated that to solve this problem you will need to apply the Equations of Rotational Motion concept. You can view video lessons to learn Equations of Rotational Motion. Or if you need more Equations of Rotational Motion practice, you can also practice Equations of Rotational Motion practice problems.

What professor is this problem relevant for?

Based on our data, we think this problem is relevant for Professor Woods' class at USF.